Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Br J Pharmacol ; 181(6): 840-878, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-37706346

RESUMEN

Adipose tissue has recently been recognized as an important endocrine organ that plays a crucial role in energy metabolism and in the immune response in many metabolic tissues. With this regard, emerging evidence indicates that an important crosstalk exists between the adipose tissue and the brain. However, the contribution of adipose tissue to the development of age-related diseases, including Alzheimer's disease, remains poorly defined. New studies suggest that the adipose tissue modulates brain function through a range of endogenous biologically active factors known as adipokines, which can cross the blood-brain barrier to reach the target areas in the brain or to regulate the function of the blood-brain barrier. In this review, we discuss the effects of several adipokines on the physiology of the blood-brain barrier, their contribution to the development of Alzheimer's disease and their therapeutic potential. LINKED ARTICLES: This article is part of a themed issue From Alzheimer's Disease to Vascular Dementia: Different Roads Leading to Cognitive Decline. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v181.6/issuetoc.


Asunto(s)
Enfermedad de Alzheimer , Humanos , Enfermedad de Alzheimer/metabolismo , Adipoquinas , Encéfalo/metabolismo , Tejido Adiposo/fisiología , Barrera Hematoencefálica/metabolismo
2.
Nat Commun ; 14(1): 8389, 2023 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-38104163

RESUMEN

Lymphangiogenesis refers to the generation of new lymphatic vessels from pre-existing ones. During development and particular adult states, lymphatic endothelial cells (LEC) undergo reprogramming of their transcriptomic and signaling networks to support the high demands imposed by cell proliferation and migration. Although there has been substantial progress in identifying growth factors and signaling pathways controlling lymphangiogenesis in the last decades, insights into the role of metabolism in lymphatic cell functions are just emerging. Despite numerous similarities between the main metabolic pathways existing in LECs, blood ECs (BEC) and other cell types, accumulating evidence has revealed that LECs acquire a unique metabolic signature during lymphangiogenesis, and their metabolic engine is intertwined with molecular regulatory networks, resulting in a tightly regulated and interconnected process. Considering the implication of lymphatic dysfunction in cancer and lymphedema, alongside other pathologies, recent findings hold promising opportunities to develop novel therapeutic approaches. In this review, we provide an overview of the status of knowledge in the molecular and metabolic network regulating the lymphatic vasculature in health and disease.


Asunto(s)
Vasos Linfáticos , Linfedema , Humanos , Células Endoteliales/metabolismo , Vasos Linfáticos/metabolismo , Linfangiogénesis/fisiología , Linfedema/patología , Transducción de Señal
3.
Front Immunol ; 14: 1235812, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37744339

RESUMEN

The tumor microenvironment (TME) is an intricate complex and dynamic structure composed of various cell types, including tumor, stromal and immune cells. Within this complex network, lymphatic endothelial cells (LECs) play a crucial role in regulating immune responses and influencing tumor progression and metastatic dissemination to lymph node and distant organs. Interestingly, LECs possess unique immunomodulatory properties that can either promote or inhibit anti-tumor immune responses. In fact, tumor-associated lymphangiogenesis can facilitate tumor cell dissemination and metastasis supporting immunoevasion, but also, different molecular mechanisms involved in LEC-mediated anti-tumor immunity have been already described. In this context, the crosstalk between cancer cells, LECs and immune cells and how this communication can shape the immune landscape in the TME is gaining increased interest in recent years. In this review, we present a comprehensive and updated report about the immunomodulatory properties of the lymphatic endothelium within the TME, with special focus on primary tumors and tumor-draining lymph nodes. Furthermore, we outline emerging research investigating the potential therapeutic strategies targeting the lymphatic endothelium to enhance anti-tumor immune responses. Understanding the intricate mechanisms involved in LEC-mediated immune modulation in the TME opens up new possibilities for the development of innovative approaches to fight cancer.


Asunto(s)
Endotelio Linfático , Microambiente Tumoral , Células Endoteliales , Comunicación , Reacciones Cruzadas
5.
Antioxidants (Basel) ; 12(5)2023 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-37237967

RESUMEN

The role played by a sustained angiogenesis in cancer and other diseases stimulates the interest in the search for new antiangiogenic drugs. In this manuscript, we provide evidence that 1,8- dihydroxy-9,10-anthraquinone (danthron), isolated from the fermentation broth of the marine fungus Chromolaenicola sp. (HL-114-33-R04), is a new inhibitor of angiogenesis. The results obtained with the in vivo CAM assay indicate that danthron is a potent antiangiogenic compound. In vitro studies with human umbilical endothelial cells (HUVEC) reveal that this anthraquinone inhibits certain key functions of activated endothelial cells, including proliferation, proteolytic and invasive capabilities and tube formation. In vitro studies with human breast carcinoma MDA-MB231 and fibrosarcoma HT1080 cell lines suggest a moderate antitumor and antimetastatic activity of this compound. Antioxidant properties of danthron are evidenced by the observation that it reduces the intracellular reactive oxygen species production and increases the amount of intracellular sulfhydryl groups in endothelial and tumor cells. These results support a putative role of danthron as a new antiangiogenic drug with potential application in the treatment and angioprevention of cancer and other angiogenesis-dependent diseases.

6.
Biomed Pharmacother ; 155: 113759, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36271548

RESUMEN

The inhibition of sustained angiogenesis is an attractive approach for the treatment of cancer, blindness and other angiogenesis-dependent diseases. Encouraged by our previous finding that toluquinol, a methyl hydroquinone isolated from a marine fungus, exhibited an interesting antiangiogenic activity, we further explored structural modifications of this natural compound in order to develop improved drug candidates. Our results indicate that although the methyl group plays a relevant role in the cytotoxic activity of toluquinol, some derivatives in which this methyl was replaced by another substituent, could keep the antiangiogenic activity, whereas exhibiting a lower cytotoxicity in vitro. This is the case of (E)- 2-(3-methoxyprop-1-en-1-yl) benzene-1,4-diol, which exhibits a decreased toxicity, whereas maintaining or even improving the antiangiogenic activity of toluquinol, as demonstrated by a number of in vitro (endothelial cells proliferation, migration and tube formation) and in vivo (chick embryo chrorioallantoic membrane vascularization and murine corneal neovascularization) experimental approaches. Our results point to a mechanism of action that could be related to an induction of apoptosis, as well as to an increase in the reactive oxygen species levels, a reduction of the redox capacity and the inhibition of the VEGFR2, Akt and ERK phosphorylation in VEGF-activated endothelial cells. The biological activity of this new angiogenesis inhibitor, along with its lower undesired toxicity, suggests that it is a promising drug candidate with improved potential for the treatment of angiogenesis-related diseases.


Asunto(s)
Inhibidores de la Angiogénesis , Hidroquinonas , Embrión de Pollo , Animales , Ratones , Humanos , Inhibidores de la Angiogénesis/uso terapéutico , Hidroquinonas/farmacología , Hidroquinonas/uso terapéutico , Factor A de Crecimiento Endotelial Vascular , Proteínas Proto-Oncogénicas c-akt/metabolismo , Células Endoteliales/metabolismo , Especies Reactivas de Oxígeno , Benceno , Transducción de Señal , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismo , Neovascularización Patológica/tratamiento farmacológico , Proliferación Celular , Células Endoteliales de la Vena Umbilical Humana/metabolismo
7.
Int J Mol Sci ; 23(19)2022 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-36232355

RESUMEN

The dynamic crosstalk between the different components of the tumor microenvironment is critical to determine cancer progression, metastatic dissemination, tumor immunity, and therapeutic responses. Angiogenesis is critical for tumor growth, and abnormal blood vessels contribute to hypoxia and acidosis in the tumor microenvironment. In this hostile environment, cancer and stromal cells have the ability to alter their metabolism in order to support the high energetic demands and favor rapid tumor proliferation. Recent advances have shown that tumor endothelial cell metabolism is reprogrammed, and that targeting endothelial metabolic pathways impacts developmental and pathological vessel sprouting. Therefore, the use of metabolic antiangiogenic therapies to normalize the blood vasculature, in combination with immunotherapies, offers a clinical niche to treat cancer.


Asunto(s)
Células Endoteliales , Neoplasias , Células Endoteliales/metabolismo , Humanos , Inmunoterapia , Neoplasias/patología , Neovascularización Patológica/patología , Microambiente Tumoral
8.
Biochem Mol Biol Educ ; 50(5): 437-439, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35822238

RESUMEN

We have implemented at the University of Málaga (Spain) a new course-based undergraduate research experience (CURE) to involve undergraduate students of Science in a real-world scientific problem. Within the topic "Let's find acetylcholinesterase inhibitors as new drug candidates for the treatment of Alzheimer's", students have been engaged into the early stages of the drug discovery process. Working in groups of 4-5 persons, they have searched information in databases, proposed solutions to the driving question and designed protocols to carry them out in vitro and in silico. Overall, the implementation of this experience has been very satisfactory in terms of academic performance and students' perception. This article reports a session from the virtual international 2021 IUBMB/ASBMB workshop, "Teaching Science on Big Data".


Asunto(s)
Acetilcolinesterasa , Inhibidores de la Colinesterasa , Descubrimiento de Drogas , Humanos , España , Estudiantes
10.
Nat Commun ; 13(1): 2760, 2022 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-35589749

RESUMEN

Autophagy has vasculoprotective roles, but whether and how it regulates lymphatic endothelial cells (LEC) homeostasis and lymphangiogenesis is unknown. Here, we show that genetic deficiency of autophagy in LEC impairs responses to VEGF-C and injury-driven corneal lymphangiogenesis. Autophagy loss in LEC compromises the expression of main effectors of LEC identity, like VEGFR3, affects mitochondrial dynamics and causes an accumulation of lipid droplets (LDs) in vitro and in vivo. When lipophagy is impaired, mitochondrial ATP production, fatty acid oxidation, acetyl-CoA/CoA ratio and expression of lymphangiogenic PROX1 target genes are dwindled. Enforcing mitochondria fusion by silencing dynamin-related-protein 1 (DRP1) in autophagy-deficient LEC fails to restore LDs turnover and lymphatic gene expression, whereas supplementing the fatty acid precursor acetate rescues VEGFR3 levels and signaling, and lymphangiogenesis in LEC-Atg5-/- mice. Our findings reveal that lipophagy in LEC by supporting FAO, preserves a mitochondrial-PROX1 gene expression circuit that safeguards LEC responsiveness to lymphangiogenic mediators and lymphangiogenesis.


Asunto(s)
Linfangiogénesis , Vasos Linfáticos , Animales , Autofagia/genética , Células Endoteliales/metabolismo , Ácidos Grasos/metabolismo , Gotas Lipídicas/metabolismo , Linfangiogénesis/genética , Vasos Linfáticos/metabolismo , Ratones , Mitocondrias , Factores de Transcripción/metabolismo
11.
Pharmaceutics ; 14(2)2022 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-35213989

RESUMEN

The number of cancer cases worldwide keeps growing unstoppably, despite the undeniable advances achieved by basic research and clinical practice. Urologic tumors, including some as prevalent as prostate, bladder or kidney tumors, are no exceptions to this rule. Moreover, the fact that many of these tumors are detected in early stages lengthens the duration of their treatment, with a significant increase in health care costs. In this scenario, prevention offers the most cost-effective long-term strategy for the global control of these diseases. Although specialized diets are not the only way to decrease the chances to develop cancer, epidemiological evidence support the role of certain plant-derived foods in the prevention of urologic cancer. In many cases, these plants are rich in antiangiogenic phytochemicals, which could be responsible for their protective or angiopreventive properties. Angiogenesis inhibition may contribute to slow down the progression of the tumor at very different stages and, for this reason, angiopreventive strategies could be implemented at different levels of chemoprevention, depending on the targeted population. In this review, epidemiological evidence supporting the role of certain plant-derived foods in urologic cancer prevention are presented, with particular emphasis on their content in bioactive phytochemicals that could be used in the angioprevention of cancer.

12.
Cancers (Basel) ; 13(20)2021 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-34680238

RESUMEN

Growth factors such as vascular endothelial growth factor (VEGF), fibroblast growth factor (FGF) and epidermal growth factor (EGF) are important angiogenesis-mediating factors. They exert their effects not only through their respective receptor tyrosine kinases (RTKs), but they also require molecular pairing with heparan sulfate proteoglycans (HSPGs). Angiogenic growth factors and their signaling pathways are commonly targeted in current anti-angiogenic cancer therapies but have unfortunately insufficient impact on patient survival. Considering their obvious role in pathological angiogenesis, HS-targeting drugs have become an appealing new strategy. Therefore, we aimed to reduce angiogenesis through interference with growth factor-HS binding and downstream signaling using a CXCL9-derived peptide with a high affinity for glycosaminoglycans (GAGs), CXCL9(74-103). We showed that CXCL9(74-103) reduced EGF-, VEGF165- and FGF-2-mediated angiogenic processes in vitro, such as endothelial cell proliferation, chemotaxis, adhesion and sprouting, without exerting cell toxicity. CXCL9(74-103) interfered with growth factor signaling in diverse ways, e.g., by diminishing VEGF165 binding to HS and by direct association with FGF-2. The dependency of CXCL9(74-103) on HS for binding to HMVECs and for exerting its anti-angiogenic activity was also demonstrated. In vivo, CXCL9(74-103) attenuated neovascularization in the Matrigel plug assay, the corneal cauterization assay and in MDA-MB-231 breast cancer xenografts. Additionally, CXCL9(74-103) reduced vascular leakage in the retina of diabetic rats. In contrast, CXCL9(86-103), a peptide with low GAG affinity, showed no overall anti-angiogenic activity. Altogether, our results indicate that CXCL9(74-103) reduces angiogenesis by interfering with multiple HS-dependent growth factor signaling pathways.

13.
Biomed Pharmacother ; 144: 112263, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34626933

RESUMEN

The tropical plant Annona muricata has been widely used for traditional ethnobotanic and pharmacologic applications. Extracts from different parts of this plant have been shown to have a wide range of biological activities. In the present study, we carry out a metabolomic study of both aqueous and DMSO extracts from Annona muricata leaves that has allowed us to identify 33 bioactive compounds. Furthermore, we have shown that aqueous extracts are able to inhibit endothelial cell migration and both aqueous and DMSO extracts inhibit the formation of tubule-like structures by endothelial cells cultured on Matrigel. We conclude that extracts of Annona muricata leaves have great potential as anti-angiogenic natural combinations of bioactive compounds.


Asunto(s)
Inhibidores de la Angiogénesis/farmacología , Annona , Células Endoteliales/efectos de los fármacos , Metabolómica , Neovascularización Fisiológica/efectos de los fármacos , Fitoquímicos/farmacología , Extractos Vegetales/farmacología , Inhibidores de la Angiogénesis/aislamiento & purificación , Animales , Annona/metabolismo , Bovinos , Diferenciación Celular/efectos de los fármacos , Movimiento Celular/efectos de los fármacos , Células Cultivadas , Cromatografía Líquida de Alta Presión , Metaboloma , Fitoquímicos/aislamiento & purificación , Extractos Vegetales/aislamiento & purificación , Hojas de la Planta , Espectrometría de Masa por Ionización de Electrospray
14.
STAR Protoc ; 2(3): 100508, 2021 09 17.
Artículo en Inglés | MEDLINE | ID: mdl-34585146

RESUMEN

Endothelial cells (ECs) harbor distinct phenotypical and functional characteristics depending on their tissue localization and contribute to brain, eye, lung, and muscle diseases such as dementia, macular degeneration, pulmonary hypertension, and sarcopenia. To study their function, isolation of pure ECs in high quantities is crucial. Here, we describe protocols for rapid and reproducible blood vessel EC purification established for scRNA sequencing from murine tissues using mechanical and enzymatic digestion followed by magnetic and fluorescence-activated cell sorting. For complete details on the use and execution of these protocol, please refer to Kalucka et al. (2020), Rohlenova et al. (2020), and Goveia et al. (2020).


Asunto(s)
Encéfalo/citología , Coroides/citología , Células Endoteliales/citología , Pulmón/citología , Músculos/citología , Animales , Citometría de Flujo/métodos , Masculino , Ratones , Ratones Endogámicos C57BL
15.
STAR Protoc ; 2(3): 100523, 2021 09 17.
Artículo en Inglés | MEDLINE | ID: mdl-34382011

RESUMEN

Endothelial cells (ECs) exhibit phenotypic and functional tissue specificities, critical for studies in the vascular field and beyond. Thus, tissue-specific methods for isolation of highly purified ECs are necessary. Kidney, spleen, and testis ECs are relevant players in health and diseases such as chronic kidney disease, acute kidney injury, myelofibrosis, and cancer. Here, we provide tailored protocols for rapid and reproducible EC purification established for scRNA sequencing from these adult murine tissues using the combination of magnetic- and fluorescence-activated cell sorting. For complete details on the use and execution of these protocols, please refer to Kalucka et al. (2020) and Dumas et al. (2020).


Asunto(s)
Células Endoteliales/citología , Riñón/citología , Bazo/citología , Testículo/citología , Animales , Citometría de Flujo , Masculino , Ratones
16.
Cell Rep ; 35(11): 109253, 2021 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-34133923

RESUMEN

Tumor vessel co-option is poorly understood, yet it is a resistance mechanism against anti-angiogenic therapy (AAT). The heterogeneity of co-opted endothelial cells (ECs) and pericytes, co-opting cancer and myeloid cells in tumors growing via vessel co-option, has not been investigated at the single-cell level. Here, we use a murine AAT-resistant lung tumor model, in which VEGF-targeting induces vessel co-option for continued growth. Single-cell RNA sequencing (scRNA-seq) of 31,964 cells reveals, unexpectedly, a largely similar transcriptome of co-opted tumor ECs (TECs) and pericytes as their healthy counterparts. Notably, we identify cell types that might contribute to vessel co-option, i.e., an invasive cancer-cell subtype, possibly assisted by a matrix-remodeling macrophage population, and another M1-like macrophage subtype, possibly involved in keeping or rendering vascular cells quiescent.


Asunto(s)
Neoplasias/irrigación sanguínea , Neoplasias/patología , Análisis de la Célula Individual , Animales , Línea Celular Tumoral , Células Endoteliales/patología , Femenino , Neoplasias Renales/patología , Neoplasias Pulmonares/secundario , Macrófagos/patología , Ratones Endogámicos BALB C , Células Mieloides/patología , Pericitos/patología
17.
STAR Protoc ; 2(2): 100489, 2021 06 18.
Artículo en Inglés | MEDLINE | ID: mdl-34007969

RESUMEN

Endothelial cells (ECs) from the small intestine, colon, liver, and heart have distinct phenotypes and functional adaptations that are dependent on their physiological environment. Gut ECs adapt to low oxygen, heart ECs to contractile forces, and liver ECs to low flow rates. Isolating high-purity ECs in sufficient quantities is crucial to study their functions. Here, we describe protocols combining magnetic and fluorescent activated cell sorting for rapid and reproducible EC purification from four adult murine tissues. For complete details on the use and execution of these protocols, please refer to Kalucka et al. (2020).


Asunto(s)
Células Endoteliales/citología , Citometría de Flujo/métodos , Intestinos/citología , Hígado/citología , Miocardio/citología , Animales , Células Cultivadas , Masculino , Ratones , Ratones Endogámicos C57BL
18.
Eur Respir J ; 57(4)2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33184117

RESUMEN

Cystic fibrosis (CF) is a life-threatening disorder characterised by decreased pulmonary mucociliary and pathogen clearance, and an exaggerated inflammatory response leading to progressive lung damage. CF is caused by bi-allelic pathogenic variants of the cystic fibrosis transmembrane conductance regulator (CFTR) gene, which encodes a chloride channel. CFTR is expressed in endothelial cells (ECs) and EC dysfunction has been reported in CF patients, but a role for this ion channel in ECs regarding CF disease progression is poorly described.We used an unbiased RNA sequencing approach in complementary models of CFTR silencing and blockade (by the CFTR inhibitor CFTRinh-172) in human ECs to characterise the changes upon CFTR impairment. Key findings were further validated in vitro and in vivo in CFTR-knockout mice and ex vivo in CF patient-derived ECs.Both models of CFTR impairment revealed that EC proliferation, migration and autophagy were downregulated. Remarkably though, defective CFTR function led to EC activation and a persisting pro-inflammatory state of the endothelium with increased leukocyte adhesion. Further validation in CFTR-knockout mice revealed enhanced leukocyte extravasation in lung and liver parenchyma associated with increased levels of EC activation markers. In addition, CF patient-derived ECs displayed increased EC activation markers and leukocyte adhesion, which was partially rescued by the CFTR modulators VX-770 and VX-809.Our integrated analysis thus suggests that ECs are no innocent bystanders in CF pathology, but rather may contribute to the exaggerated inflammatory phenotype, raising the question of whether normalisation of vascular inflammation might be a novel therapeutic strategy to ameliorate the disease severity of CF.


Asunto(s)
Regulador de Conductancia de Transmembrana de Fibrosis Quística , Fibrosis Quística , Fibrosis Quística/genética , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Células Endoteliales/metabolismo , Humanos , Fenotipo , Transcriptoma
19.
Trends Endocrinol Metab ; 31(8): 580-595, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32622584

RESUMEN

Angiogenesis is crucial for the development of the blood vasculature during embryogenesis, but also contributes to cancer and other diseases. While therapeutic targeting of endothelial cells (ECs) through growth factor inhibition is limited by insufficient efficacy and resistance, a new paradigm for modulating angiogenesis by targeting EC metabolism has emerged. Findings from the past decade highlight how ECs adapt their metabolism to proliferate or migrate during vessel sprouting, or to maintain the vascular barrier and protect themselves against oxidative stress in the high-oxygen environment they are exposed to in healthy conditions. We overview key endothelial metabolic pathways underlying the different EC phenotypes, as well as potential opportunities for targeting EC metabolism in therapeutic settings.


Asunto(s)
Células Endoteliales/metabolismo , Neovascularización Patológica/fisiopatología , Neovascularización Fisiológica/fisiología , Animales , Humanos , Neovascularización Patológica/metabolismo , Neovascularización Fisiológica/genética , Estrés Oxidativo/fisiología
20.
Circ Res ; 127(4): 466-482, 2020 07 31.
Artículo en Inglés | MEDLINE | ID: mdl-32404031

RESUMEN

RATIONALE: Endothelial cells (ECs) are highly glycolytic and generate the majority of their energy via the breakdown of glucose to lactate. At the same time, a main role of ECs is to allow the transport of glucose to the surrounding tissues. GLUT1 (glucose transporter isoform 1/Slc2a1) is highly expressed in ECs of the central nervous system (CNS) and is often implicated in blood-brain barrier (BBB) dysfunction, but whether and how GLUT1 controls EC metabolism and function is poorly understood. OBJECTIVE: We evaluated the role of GLUT1 in endothelial metabolism and function during postnatal CNS development as well as at the adult BBB. METHODS AND RESULTS: Inhibition of GLUT1 decreases EC glucose uptake and glycolysis, leading to energy depletion and the activation of the cellular energy sensor AMPK (AMP-activated protein kinase), and decreases EC proliferation without affecting migration. Deletion of GLUT1 from the developing postnatal retinal endothelium reduces retinal EC proliferation and lowers vascular outgrowth, without affecting the number of tip cells. In contrast, in the brain, we observed a lower number of tip cells in addition to reduced brain EC proliferation, indicating that within the CNS, organotypic differences in EC metabolism exist. Interestingly, when ECs become quiescent, endothelial glycolysis is repressed, and GLUT1 expression increases in a Notch-dependent fashion. GLUT1 deletion from quiescent adult ECs leads to severe seizures, accompanied by neuronal loss and CNS inflammation. Strikingly, this does not coincide with BBB leakiness, altered expression of genes crucial for BBB barrier functioning nor reduced vascular function. Instead, we found a selective activation of inflammatory and extracellular matrix related gene sets. CONCLUSIONS: GLUT1 is the main glucose transporter in ECs and becomes uncoupled from glycolysis during quiescence in a Notch-dependent manner. It is crucial for developmental CNS angiogenesis and adult CNS homeostasis but does not affect BBB barrier function.


Asunto(s)
Barrera Hematoencefálica/fisiología , Encéfalo/irrigación sanguínea , Células Endoteliales/metabolismo , Transportador de Glucosa de Tipo 1/fisiología , Neovascularización Fisiológica , Vasos Retinianos , Proteínas Quinasas Activadas por AMP/metabolismo , Animales , Encéfalo/citología , Movimiento Celular , Proliferación Celular , Células Endoteliales/fisiología , Endotelio , Endotelio Vascular/fisiología , Metabolismo Energético , Glucosa/metabolismo , Transportador de Glucosa de Tipo 1/antagonistas & inhibidores , Glucólisis , Humanos , Ratones , Retina/citología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...